
Embedded Agile Project by the Numbers With Newbies

Nancy Van Schooenderwoert
Agile Rules, http://www.agilerules.com

nancyv@agilerules.com

Abstract

There is a class of projects that can only be

accomplished via agile practices due to their
complexity and risks. It is rare for such a project to be
staffed with newbies but it happened, and this paper
tells the story. It is also rare for an agile project to
have substantial hard numbers to tell its story but this
one does. This paper presents detailed metrics from a
three year long agile project where a newly formed
development team produced a new embedded software
product from scratch. The team experimented with
various agile practices while recording data on bug
rates, bug root causes, code size, schedule compliance,
and labor expended. Although most of the team
members lacked important technical skills for this
work, they outperformed far more experienced teams.
The natural learning environment and safety net that
Agile provides allowed them to learn fast while
keeping them from serious mistakes.

1. Introduction

The project in question was a joint venture between
a multinational corporation and a major agriculture
equipment manufacturer to produce a mobile
spectrometer that could analyze grain. The Grain
Monitoring System (GMS) would tell a farmer exactly
how much protein, oil, or other constituent is present in
their corn (or other grain) while it’s being harvested.

This project was compelling enough to justify the
risk of using developers who were less experienced
than the company would have preferred. Staffing took
place at the height of the dot com bubble, making it
very difficult to recruit people with the preferred skills.

The team built the embedded software for the grain
monitor and also built seven other associated
Windows-based utility applications. These ranged in
size between about 1,000 and 3,000 lines of code. The
bulk of the work by far was the embedded application
to control the grain monitor. That code base is the

subject of this paper. The utility software was not built
using agile team practices.

2. Project Setting and Challenges

The multinational corporation was made up of
several commercial business lines but the division near
Boston had mainly done defense work. The grain
monitor project was an entry into commercial
technology products for them. The project was ideally
suited to agile methods due to these risks:

• Newly designed complex algorithms to
compute the grain results

• Extremely low noise electronics necessary for
the sensor input signals to be detectable

• A new prototype sensor being used to collect
the grain’s light spectrum

• Software and hardware had to be integrated
with vehicle systems designed by the partner

• No existing microprocessor powerful enough
to handle the initial algorithm

• The unit had to work accurately in extremes of
temperature, vibration, and electrical noise

This is clearly the type of project that makes

waterfall methods stall out completely. Even a
seasoned embedded team could not have built this
product using a traditional plan-driven approach.

Critical
Moderate
Cosmetic

51

10
23
18

S/W Releases

Year 1 Year 2 Year 3

Figure 1. Project timeline showing actual
releases and defects

The GMS team delivered this product after three
years of development, having encountered a total of 51
defects during that time. The open bug list never had

more than two items at a time. Productivity was
measured at almost 3 times the level for comparable
embedded software teams. The first field test units
were delivered approximately six months into
development. After that point, the software team
supported the other engineering disciplines while
continuing to do software enhancements.

3. The Team

For several reasons it was difficult to get software
developers with the desired experience levels. The
main reason is that the labor market was tight at that
point. Also our manager was obliged to use available
internal people and train them where necessary.

The skills most needed were:

• C programming
• Multitasking experience
• Electronics background
• Firmware programming

The below figure gives an idea of the level of these

skills necessary for the work, and how the team
members’ qualifications compared with that need.

C coding

Multi-tasking

Electronics

Firmware

Desired Expertise Level
novice avg. expert

Don's Qualifications

Bob's Qualifications

C coding

Multi-tasking

Electronics

Firmware

C coding

Multi-tasking

Electronics

Firmware

Sherry's Qualifications

Jack's Qualifications

C coding

Multi-tasking

Electronics

Firmware

C coding

Multi-tasking

Electronics

Firmware

Nancy's Qualifications
C coding

Multi-tasking

Electronics

Firmware

Figure 2. Team's experience levels in key skill
areas

Windows programming was the main skill for three
of the developers – Don, Sherry, and Jack (not their
real names.) The project did call for creation of several
Windows-based utility applications for use with the
grain monitor. These allowed the creation and
downloading of calibration tables, or helped in the
testing of the units. The GMS embedded software was

the only deliverable; the other code bases were custom
tools.

3.1 Team’s Context in the Organization

The GMS software team was one among several
teams associated with the project at our company.
There were small teams to build the hardware, the
optics, develop the mathematical algorithms, and the
mechanical design. This totaled approximately 35
people at the height of the project.

The software team also needed to coordinate their
design with a small software group at the partner
company, where they had designed a framework for all
the software systems mounted on farm equipment. The
GMS software had to behave as one node on the
vehicle’s CAN bus network. The arrangement between
the two companies was structured as a joint venture.

3.2 The Technical Lead/ Coach

For better or worse, I was sure of one thing: I
wanted to have hard numbers, not mere anecdotes,
once all was said and done. My role was that of
Software Technical Lead. I was expected to formulate
and analyze the requirements, and assemble a team to
carry out the work.

Throughout the project I was able to spend about
half my time as a technical contributor on the project.
The rest of the time was taken up by coordination and
management duties. I did not have any formal authority
over the team members; we all reported to the same
manager. I also had no budget authority.

The Extreme Programming community has come to
recognize several roles within agile teams. One is
‘coach’, someone who watches over the process and
helps others play their parts within it. That role is a
good description of what I did in addition to the
technical lead duties.

4. What Was Measured

The team followed the IEEE guidelines on basic
metrics. Those guidelines said that at a minimum, you
should capture four items:

• Effort expended
• Size of the software built
• Schedule compliance
• Quality of the deliverable

Effort and schedule were already captured in project
tracking documents. We could use tools to record code

size. It took extra effort to track defects thoroughly and
create a root cause analysis for each one. Every
incorrect or unexpected software behavior was
considered a bug once it got past unit test. There was
no attempt to catalog all the bugs caught in unit testing
or earlier activities.

4.1. Parametric Estimating

Parametric estimating is a technique that relies on
the existence of data from prior projects that are similar
to the one being estimated. Several software estimation
tools exist that use this technique, and we made use of
one of them early in the project before any staffers
were aboard.

Our managers made a detailed evaluation of the
“Seer SEM” software estimation tool from Galorath
Inc. in September of 1998. As part of that evaluation,
the consultants at Galorath collected data on the GMS
project in order to do an estimate of the embedded
code to be built.

I took Galorath’s breakdowns for hours and lines of
code and found that their industry productivity data
could be expressed as 1.2 ESLOC/hr. (ESLOC is
Effective Source Lines Of Code, i.e. omitting
comments and blank lines.) Their product uses a
database of thousands of real-world projects, taking the
“actuals” from real-time embedded projects
comparable to ours. Therefore the figure of 1.2
ESLOC/hr had validity across the embedded software
industry.

Project data was captured with a view to comparing
the team’s productivity with this, and any other
software industry productivity figures that could be
found.

5. What Happened

As staffers came onto the project in the first month,
it was evident to all that they were not well equipped to
deliver this project in the aggressive time span that
management wanted. As team lead, I held a meeting
with them and said I was prepared to teach them all
they needed to know about real-time software, and
operating systems, etc. provided they agreed to work as
a real team and help each other. By “work as a real
team” I meant supporting the team based practices I
wanted to institute right at the start. These included:

• Collective code ownership
• Writing strong unit tests, and maintaining them
• A bug tracing system that could be always

enabled within the code

The foundation necessary for all these was a coding
standard. So I had them work that out prior to writing
any production code. There was pressure to produce
code immediately but I resisted that. It would
undermine our ability to deliver consistently over time,
because we didn’t have the foundations in place yet.

The team also had to configure the tool set so that
we’d have a fast code-compile-debug loop, with all
compiler warnings turned up to the max. This was part
of the safety net we constructed.

5.1 The First Iteration

The team delivered iteration 1 after a few months,
and only two bugs were found in that software. Some
of the utility software had also been built as part of that
effort.

I had done the estimating using a figure of 2.5
ESLOC/hr based on my experience with similar
projects where some of the team-based practices were
in use. In order to see if we had achieved that, I did an
analysis of the labor that went into iteration 1 to
separate out the time that went only into the embedded
software work. I included all the duration of that
iteration, even the part when we were just doing the
tool setup and working out a coding standard.

The result was that the team had produced 3.5
ESLOC/hr of tested, working code – almost 3 times the
industry average according to the Galorath numbers.
To be sure I had used their breakdowns correctly in my
analysis, I spoke to one of the consultants from
Galorath and got agreement that my analysis was valid.

5.2 Learning via Mistakes and Safety Net

5.2.1. Globals. We had to use a small number of
globals to interface with programmed logic and other
hardware. At one point early on the team started
adding more global variables, and I tried to convince
them that it was a bad practice. They believed the
convenience of globals outweighed the seemingly
abstract concerns I raised about reentrancy. I decided
to let them use the globals awhile so they would see
first hand the problems caused.

Our early releases were just single-threaded code
because the commercial operating system we planned
to use hadn’t been purchased yet. When we got the OS
and converted the code base (4,000 lines of C at that
time) to using it, trouble started to appear. During
integration test the system was halting unless interrupts
were disabled. This gave me a chance to explain how
that could happen due to a task switch in the middle of
updating a global structure or variable.

The idea that certain kinds of problem simply could
not be traced was new for all except Bob (who had
plenty of hardware and firmware experience). This
kind of problem had to be prevented by using
semaphores. Once they had that idea down, we
eliminated most globals but needed to keep some
others. We divided those into atomic ones and non-
atomic. For all the non-atomic globals we assigned
semaphores, and changed the code to utilize them.
Now they had an appreciation of the re-entrancy issue,
and how to handle it. Better yet, it wasn’t textbook
learning.

Some people will say it would have been simpler
for me to just outlaw globals instead of going through
all these adventures. I think it was worthwhile because
there is no substitute for the level of understanding
they developed. If I had just made a decree then I’d
have to police it eternally. This way the developers
enforced the practices with far more energy than they
ever would have if I’d simply ordered them to get rid
of the globals.

5.2.2. Semaphores. We again had a bug that
disappeared when interrupts were disabled!

The root cause of this bug was two-fold. We were
releasing one semaphore twice, but the operating
system had a bug that let the semaphore count go from
1 to 2 on the second release, when it should have given
us an error return. (These were binary semaphores, not
counting semaphores). We shouldn’t have had a double
release in our code, but the operating system also had a
bug for allowing it.

The team fixed the task sequencing situation to
prevent the second semaphore release from happening,
but we needed to be sure we’d know if our code ever
again tried to double-release a semaphore. We added
to our safety net: we built a wrapper around all of our
semaphore calls to the operating system to make sure
we’d know promptly if the situation ever came up
again.

5.2.3. Hardware Individuality. About a year into
the project we had several GMS units ready to be
tested out in farm fields. We prepared a release and
thoroughly tested it on the GMS unit we had in our lab.

The problem was that we finally did a non-debug
release (as we should have been doing long before
this!). Though the non-debug build was completely
tested, the test was done with just one unit. That unit’s
lamp current counts happened to be within the valid
range. The range check was skipped for ‘debug’ since
we never had a spec on what it should be. Certain other
units’ lamp current counts value did not pass this test.
(Each unit had a special lamp to illuminate the grain
for collecting spectra readings).

Testing on one set of hardware was not good
enough. To be valid, the tests had to be done on all the

field units. When it came time for full production, it
had to be done at least on a statistically valid range of
units.

Through this bug the team learned that debug
builds, though convenient, can hide problems. They
also learned that every piece of hardware is an
individual. It’s voltage or current readings can vary
widely from other hardware but the software has to
defend itself from hardware that is out of spec. Our
software monitored many “test points” on the circuit
board that were meant to tell us whether the hardware
was working adequately. But we needed to run it on all
the hardware, i.e. on each of the field units.

5.2.4. Memory Corruption. After we were
regularly supplying units for field tests, an interesting
bug was reported. A GMS unit would seem to be
running but the data readings would start to remain the
same at every sampling interval. The software log told
us that the timing interval value was being over-written
by a very large number, so instead of having a couple
seconds between data samples it was set to hours.

The detective work that the team members had to
go through to track down this problem was quite an
education for them. As soon as I saw the incorrect
value in the timing interval variable I knew memory
was being corrupted, and I explained to them several
ways that can happen. They systematically combed
through the code to eliminate each possibility I
outlined.

Their effort paid off. That time interval number was
in a table right after the software log in memory. The
software log was overwriting its bounds by one
message length. Therefore, if a message was long, it
corrupted the timing interval variable, but only after
the software log message buffer filled up. The bug
appeared only if the software log circular buffer was
full and only if the last message before the “seam” was
longer than so many bytes. This was a case where our
unit test wasn’t thorough enough, so we added a test
for this problem.

5.2.5. Safety Net. Our safety net consisted of sets of
unit tests for each module in the system, and also a
run-time trouble logging system that was always
enabled. It simply stored log messages in a circular
buffer in RAM. Because it used very little memory and
executed very fast, we could afford to have it always
enabled. This avoided the problem of bugs that appear
only when the log system is disabled.

This safety net was extremely effective. In three
years of development, we were never stuck for more
than a few hours troubleshooting a bug. Anyone
coming onto the team could just take the unit tests and
step through them in the debugger to learn the behavior
of the code.

5.2.5. Code Reviews. Another practice that
contributed to learning for everyone was holding code
reviews by stepping through the code with a projector
screen connected to our integration PC in our team
room. It was an opportunity to discuss defensive
coding practices, and raise questions and new ideas. I
found that just talking about the code while looking at
it together was quite valuable. It seemed that we caught
the superficial bugs this way but missed the tougher
ones. I’d say the code reviews were more of an
educational tool than an effective bug prevention tool.
More about this later.

5.2.6. Kludging the Code. Once upon a time I
believed that I’d never stoop to putting a kludge in my
code just to get something out the door. Reality
intervened. When we had units out for field tests, the
company was spending a lot to have people and
equipment out in other countries. If a problem
developed in the field, we had to do something about it
immediately, even if the “something” wasn’t graceful
for the architecture.

I used these occasions to have a brainstorming
session with the team. The rule was that the best idea
wins, no matter who it comes from. “Best” meant the
change we could be most certain would fix the problem
on the first try. Usually my idea would win but not
always. I deferred to others when their idea was clearly
simpler, even when it was uglier for the architecture.

Whenever we kludged the code, we’d make it our
top priority to get a proper fix into place promptly so
that we could rip the kludge out.

I believe this practice of “let the best idea win”
helped the less experienced folks see that they could be
peers with the more experienced ones. Especially the
fact that I lived by the rule too, seemed to make an
impact. They became quite well seasoned embedded
developers by participating in this project.

5.2.6. Leadership Lessons. I found that allowing
developers to temporarily damage the code was a good
teaching method. It was definitely better than banning
certain practices to protect people from themselves.
That doesn’t encourage investigation or self-reliance. I
made it a rule (for myself) never to tell anyone to do
something just because I have more experience and I
say so. I knew I’d never listen to such advice so I
couldn’t expect them to. Rather, I’d try to convince the
others on the merits of my idea, and failing that, I had
to let reality convince them.

Working within this constraint was often
frustrating, and it was well over a year before I got
comfortable with it. I had no authority to compel
anyone to use a particular practice and in hindsight,
that is a good thing.

5.3 Subsequent Iterations

The team used iterations varying from about a week

to two months, but after the first year shorter iterations
predominated.

5.3.1. Code Reviews Dropped. We eventually gave
up code reviews in favor of discussions about what
design approach a developer (or pair) would use for
implementing a story. We could trust each other to
follow the coding standard, and our unit tests were
more effective for hunting bugs than our code reviews
had been.

Throughout the project, as I did a root cause
analysis of each bug, we’d modify our practices if we
saw a pattern of problems occurring. One pattern that
did occur was failure to do enough refactoring. That
was the root cause of many bugs. Another recurring
root cause was code review not being thorough
enough, or bugs slipping past our unit tests. Overall,
our defenses were quite good – we were averaging
only 17 bugs a year.

5.3.2. Product Owner AWOL. At one point about
mid way through the project, our business player (in
XP’s Planning Game) became very busy and because
he was confident in our ability to deliver, he refused to
participate in three consecutive releases, leaving us to
just work from the product backlog list. I knew that
this would lead to problems, and kept talking to him
about it until he agreed to come back to the iteration
planning meetings.

We didn’t have any serious problems develop due
to his absence for those iterations, but my concern was
that he’d be quite upset if we made wrong assumptions
without his inputs. He was relying heavily on us
because we had been delivering reliably, and he
wanted to instead pay more attention to other parts of
the project that were not doing as well.

5.4 End Game

During the project our partner company went

through merger with another farm equipment business.
The new owners placed lower importance on our
project.

Meanwhile our own company’s situation had
changed and they were more interested in pursuing
military projects again. Both agreed to complete the
GMS work to the point where it was ready for
production and then license the technology to some
other organization to pursue further. The product had
undergone field trials all over the world, and was a big
success with its intended customers.

All the known defects were systematically
addressed in the final couple months, and then the
development team was let go.

5.5 The Story in Numbers

Early in the project I persuaded the team members

to voluntarily track their time so that we’d be able to
tell when we should hire other developers or support
people. Our time was tracked by the company (via
weekly time sheets) but not broken out into categories.
The labor categories we used are in the table below.

Labor Type Description
Detailed Design Design work at the feature level.

Code and CSU test Unit testing and coding of functions.

CSC Integration and Test Integration testing of GMS only.

Team Process
Development

Team coordination, discussion of
work procedures, etc.

S/W Management Management activities that do not
require technical skills.

Tool support Setup, maintenance, troubleshooting
of development tools.

Technical Lead Management activities that require
technical skills.

Administrative support Clerical work that anyone can do.

CSCI (GMS-DPC) test Test involving the grain
spectrometer and the diagnostic PC.

System Integration Integration between software and
other engineerings.

Table 1. Labor tracking categories used for
GMS software

The labor distribution changed in interesting ways

throughout the project. For the first iteration it was
very different because we were a newly assembled
team and had to set up our tools and decide how we
were going to work together. The “Process devel” bar
reflects time spent talking about processes we’d use
and settling on a coding standard. Note also the large
amount of “Tool support” work.

0

5

10

15

20

25

Deta
i le

d_
de

sig
n

Cod
e_

CSU_te
st

CSC_in
teg

_te
st

Proc
es

s_
de

ve
l

s/w
_m

an
ag

em
en

t

Too
l_su

pp
ort

Tec
hnic

al_
lea

d

Adm
in_

su
pp

ort

CSCI_t
est

Sys
_in

teg
rat

ion

Sup
po

rt

Req
uir

emen
ts

Pe
rc

en
t o

f T
ea

m
 L

ab
or

Figure 3. Team's labor distribution for first
iteration

The below two figures show full-year labor
distributions. The one for the first year overlaps the
data shown for the first release.

0

5

10

15

20

25

30

35

40

Deta
ile

d_
de

sig
n

Cod
e_

CSU_te
st

CSC_in
teg

_te
st

Proc
es

s_
de

ve
l

s/w
_m

an
ag

em
en

t

Too
l_su

pp
ort

Tec
hnic

al_
lea

d

Adm
in_

su
pp

ort

CSCI_t
est

Sys
_in

teg
rat

ion

Sup
po

rt

Req
uir

emen
ts

Pe
rc

en
t o

f T
ea

m
 L

ab
or

Figure 4. Team's labor distribution for first
year of project

0

5

10

15

20

25

30

35

Deta
ile

d_
de

sig
n

Cod
e_

CSU_te
st

CSC_in
teg

_te
st

Proc
es

s_
de

ve
l

s/w
_m

an
ag

em
en

t

Too
l_su

pp
ort

Tec
hnic

al_
lea

d

Adm
in_

su
pp

ort

CSCI_t
est

Sys
_in

teg
rat

ion

Sup
po

rt

Req
uir

emen
ts

Pe
rc

en
t o

f T
ea

m
 L

ab
or

Figure 5. Team's labor distribution for second
year of project

Labor data was not collected for the third year of
the project.

Each full time developer averaged between 36 – 40
hours per week for 1999 – 2000, including vacations
and all other absences. As technical lead, my average
was 46 hours per week. These numbers are simply the
gross hours worked divided by the number of weeks.

It is worth noting that there isn’t a practical way to
determine just what labor went into the embedded
GMS software. The team also built custom utilities to
go with the unit but that work was not done using agile
practices, and that labor was not tracked separately
from work for the embedded GMS deliverable.

The staffing changed mid way through the project.
Bob and Don left the team. Jack had been part time,
and left during the first year. Sherry and I continued
and two new developers were added. By this point the
software development practices were well established,
and the low bug rate was also well established by the
original “newbie” team.

Year 1 Year 2 Year 3

Key: Full time Developer

Part Time Developer

Figure 6. Staffing profile for the GMS project

A typical set of scheduled releases is shown in the

figure below, to give an idea of how often we delivered
on time. The third release down from the top was
seriously late due to a staffing change that wasn’t
known when we planned that release. During this
period we were trying out the “Planning Game”
practice from Extreme Programming, and wanted to
track how well we did at delivering on time.

Version,
Finish date

Planned Days' effort,
Actual Days to complete

4

4
6.7.1.1

1 Nov 2001

6.6.0.3
11 Oct 2001

Resulting speed in
points/week

4.3

3

4 5.0

6.5.0
25 Sep 2001

7

15 1.8

6.4.0
12 Sep 2001

10

10 4.5

6.0.0
18 Jun 2001

12

11 5.0

Releases 6.1.0, 6.2.0, 6.3.0 were done without using
Planning game - "Business" player had no time for it.

5.13.0
15 May 2001

15

16 4.5

5.12.0
17 Apr 2001

17

20 3.7

5.11.1
19 Mar 2001

18

17 3.4

5.10.1
12 Feb 2001

10

10 4.0

5.9.0
22 Jan 2000

19

17 5.0

Figure 7. Schedule performance while using
extreme programming planning game

About mid way through the project we were
learning about Extreme Programming and bringing our
practices more in line with that. The figure below
shows that we were already doing most of those
practices to some extent, and it tries to express the
degree to which we used each practice.

Planning Game

Small Releases

Metaphor

Simple Design

Testing

Refactoring

Pair Programming

Collective Ownership

Continuous Integration

40 hour Week

On-site Customer

Coding Standards

0 % 100 %50 %

Figure 8. Practices used before (green) and
after (yellow) adopting Extreme Programming

In three years the code base grew from zero to
60,638 lines of code, mainly in C with some assembler
code. That’s raw lines of code. Our code averaged 60%
comments and blank lines. In other words about 40%
of it is effective lines of code (ESLOC).

0
10000
20000
30000
40000
50000
60000
70000

Dec
-98

Apr-
99

Aug
-99

Dec-9
9

Apr-
00

Aug
-00

Dec-0
0

Apr-
01

Aug
-01

Dec
-01

G
ro

ss
 L

in
es

 o
f C

od
e

Figure 9. Growth of the code base over three
years

As the code base grew the defect rate remained
steady at about 1.5 defects per month. The below
figure shows the cumulative defects over the life of the
project. Note that it is linear.

0
10
20
30
40
50
60

Dec
-98

Apr-
99

Aug
-99

Dec
-99

Apr-0
0

Aug
-00

Dec
-00

Apr-0
1

Aug
-01

Dec
-01

C
um

ul
at

iv
e

D
ef

ec
ts

Figure 10. Cumulative defects over three years

During the entire project, there were never more
than two open defects at one time.

0
2
4
6
8

10
12

Dec
-98

Apr-
99

Aug
-99

Dec
-99

Apr-0
0

Aug
-00

Dec
-00

Apr-0
1

Aug
-01

Dec
-01

N
um

be
r o

f D
ef

ec
ts

Figure 11. Absolute number of defects per
quarter

Throughout most of the project our “open defects”
list held one or no items. The definition of a defect (for
our purpose) is any unexpected or undesirable behavior
in the software after unit testing has been completed.
We did not play any games redefining bugs as
“features”.

A root cause analysis was done for each defect to
identify how it was inserted, and to decide how to best
prevent more occurrences. The below figure shows
when bugs were introduced.

8%

43%

49%

Requirements

Design

Code

Figure 12. Phase where defects inserted

Many defects were removed during unit tests and
earlier activities but we did not track those. We only
tracked defects removed at integration test and later.
Later phases included internal release to engineers
within our company, and external release to our partner
company. The below figure shows the phase where
defects were discovered.

49%

10%

41%

Integration Test

Post Internal
Release

Post External
Release

Figure 13. Phase where defects found

It has been observed that the longer a defect stays in
the code the harder it is to remove. That was our
experience. In order to get a sense of “a bug’s life” I
made the below charts showing how long each defect
stayed in the code.

Defect Severity Key
Cosmetic Defect - Could leave as is

Moderate Defect - Can work around, but must fix later

Critical Defect - Must fix immediately

D
ef

ec
t N

o.

Defect Inserted Defect Found

R
eq

m
ts

D
es

ig
n

C
od

in
g

In
te

g.
 T

es
t

P
os

t R
el

.
In

te
rn

al

P
os

t R
el

.
E

xt
er

na
l

1

3

6

7

8

9

10

11

12

13

14

15

2

5

4 Not a Bug - H/w running at incorrect voltage level.

Figure 14. Defect life span, year 1 of project

D
ef

ec
t N

o.

Defect Inserted Defect Found

R
eq

m
ts

D
es

ig
n

C
od

in
g

In
te

g.
 T

es
t

P
os

t R
el

.
In

te
rn

al

P
os

t R
el

.
E

xt
er

na
l

16

17

19

18

21

20

22

23

24

25

26

27

28

Not a Bug (for us) - Partner's code has bug.30

32

29

33

34

36 Not a Bug (for us) - Diagnostic PC code has bug.

35

31 Not a Bug (for us) - Partner's code has bug.

Figure 15. Defect lifespan, year 2 of project

D
ef

ec
t N

o.
Defect Inserted Defect Found

R
eq

m
ts

D
es

ig
n

C
od

in
g

In
te

g.
 T

es
t

P
os

t R
el

.
In

te
rn

al

P
os

t R
el

.
E

xt
er

na
l

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

55

52

53

54

Figure 16. Defect lifespan, year 3 of project

In order to get a sense of the type of defects that
made it past our defenses, here is a table of the root
causes for just the critical defects – those requiring an
immediate fix.
No Root cause
1 Insufficient hardware settling time allowed

due to no circuit board to test with
2 Communications hang due to change to

comms protocol without sufficient h/w test.
5 Incorrect data readings due to poor

synchronization design
8 OS deadlock due to incorrect task

sequencing
12 Math algorithm halted – incorrect error level

assigned. Insufficient team review of all s/w
log error levels

13 Change to boot code comms init could not be
tested by us

14 Data taken with incorrect settings due to
insufficient communication of the design,
and too little test prior to field use

17 Wrong settings used for data gathering due to
insufficient peer review of source code

20 Overlooked the need to test with a variety of
individual units – h/w tolerances vary.

24 Unit stops working due to array bounds
overrun revealed by non-debug release.

25 Not all of calibration table loaded because
checksum counted bytes transferred, not
bytes written to table – insufficient unit test.

26 Unit couldn’t access calibration data because
we mis-communicated changed locations in
flash memory

32 Unit hangs up when remembered grain
setting not present in new cal table. Poor
analysis of new requirement to recall
settings.

37 Data readings off by 1, 2 or more due to
incorrect task sequencing between unit and
display/ controller. Design error.

43 Bad data received due to calibration table
generator having error. Design mistake.

47 Controller software commands wrong grain
type because shift-accumulator not cleared
after use. Should have caught in unit test.

49 Incorrect settings used for data due to sharing
of settings buffer. Poor design.

55 Reading wrong type of spectra due to non
OO design of settings buffers.

Table 2. Root causes for critical defects

Four of the later software releases were analyzed
using C-Metric v 1.0 (from Software Blacksmiths) and
the average cyclomatic complexity for the whole
release was 6 or 7 for those releases. Here is a more
detailed look at a typical software release done near the
end of the project.

GMS
6.6.1.1
With the test code W/out the test code
File name Func. avg CC max CC avg CC max CC cc>10

VSPECTRA.C 48 1 7 1 7 0

UTIL_ACC.C 24 6 42 5 42 2

TST_CASE.C 0 0 0 0 0 0

SYS_CONT.C 11 12 44 10 44 3

SW_LOG.C 13 21 198 7 28 2

STR_UTIL.C 3 4 8 4 8 0

STR_FUNC.C 3 3 5 3 5 0

STAT_TBL.C 88 4 235 1 32 1

SETUP555.C 7 1 4 1 2 0

OS_UTILS.C 5 3 6 3 6 0

MEAS_PRD.C 12 9 42 5 13 3

LED_CONT.C 7 9 16 6 13 1

LAMP_REG.C 6 11 23 9 16 1

HW_ACCES.C 30 3 14 3 12 3

GLOBALS.C 6 3 7 3 3 0

GLOBALGO.C 0 0 0 0 0 0

GENERAL.C 7 11 68 2 5 0

FLASHDIR.C 1 1 1 0 0 0

FE_INTFC.C 30 7 85 3 38 2

EXFUNCS.C 19 2 2 2 2 0

ERR_HIST.C 0 0 0 0 0 0

DET_CONS.C 9 11 37 9 26 2

CMP_SPEC.C 13 8 18 8 18 4

CMD_SWBD.C 9 10 37 7 19 1

CFIG_TBL.C 57 4 144 1 16 1

CAN_COMM.C 45 10 155 6 29 6

CAL_UPDT.C 15 8 33 8 33 3

ASERT_TX.C 1 2 2 2 2 0

APCODEHD.C 0 0 0 1 1 0

ALG_TST.C 2 6 10 10 10 0

ACQ_SPEC.C 26 10 59 7 52 5

ABS_STEP.C 10 10 40 7 11 1

Table 3. Cyclomatic complexity for release
6.6.1.1

 The above table shows file names (header files
omitted), the number of functions in each file, the
average and maximum cyclomatic complexity for the
functions within the file. One difficulty with this
measurement is that our unit tester code is kept in the
same file as the production code and it’s conditionally
compiled. Because of this, it gives a falsely high
cyclomatic complexity reading.

The same data was taken for release 6.6.1.1 after
removing the unit tester code. Those results are in the
right-most three columns. The column “CC > 10”
indicates the number of functions within the file that
have cyclomatic complexity above 10.

6. How Team’s Metrics Compare with the
Industry

6.1. Productivity Estimate and Actuals

The “Seer SEM” software estimation tool used 1.2
ESLOC/hr as the expected productivity rate for fully
tested, working code (as discussed in the previous
section “Parametric Estimating”). Since the tool is
based on data from thousands of actual projects
segmented by type, we can accept that figure as the
industry norm for embedded real time software. My
previous experience led me to believe that the team
could do 2.5 ESLOC/hr if they used the team-based
practices I had experienced on other teams. One
example is the use of strong unit testing, together with
a trouble log that’s always enabled.

My staffing level plan was based on the 2.5
ESLOC/hr value. When the first iteration was

completed, a detailed analysis was done to see what
productivity level had been achieved for the embedded
software. It was 3.5 ESLOC/hr, or 292% of the
industry norm. This team of newbies to embedded
programming demonstrated almost three times the
productivity of a typical embedded team, and on their
very first iteration!

A rule of thumb for software test says that you’ve
found most of your bugs when you have found about
15 bugs per thousand lines of code (a 1.5% defect
rate). The GMS embedded code base had 29,500
ESLOC at the end of the project. If it had a 1.5%
defect rate, it would have had 443 defects. Instead it
had 51 defects (that’s the grand total over three years;
not the number present at the end). The actual defect
rate was 0.17%.

Defect Rate = (51/29,500) * 100 = 0.17%

Another useful metric is the software defect
removal efficiency, or the percent of defects that is
removed before the software is released. For GMS, 30
of the total 51 defects were removed before software
was shipped to our partner company (our customer), so
the defect removal efficiency was:

Defect Removal Efficiency = (30/51) * 100 =
58.8%

6.2. Comparison with QSM database

In an additional attempt to compare our statistics
with industry standards, I submitted the statistics from
Iteration 1 to QSM Associates Inc. They used to offer a
free service via their website to allow you to compare
your project with those in their database. (They market
a software estimation tool which works using
parametric estimating, as Galorath’s tool does.) The
“Productivity Index” they calculated for the GMS
Iteration 1 ranked us in the 90th percentile! This index,
as they compute it, covers code complexity (based on
size), schedule, efficiency, effort, and reliability.

6.3. Comparison with Data from Capers Jones

Capers Jones, a principal at Software Productivity
Research (See http://www.spr.com/) has accumulated
data from a wide variety of software projects. In order
to compare the GMS team’s performance with his data,
we need to know how many defects per function point
were in that software. We have the number of defects
per ESLOC.

Function point metrics were not in use at our
company, so I looked up an equivalence measure
online. For C, 128 lines of code equals one function

point. (See
http://www.theadvisors.com/langcomparison.htm).

GMS Function Points = 29500/128 = 230
GMS Defects per Function Point = 51/230 =
0.22

The below figure gives defects inserted along the
vertical axis, and defects removed along the horizontal.
The best software teams insert few defects and remove
a high percentage of those. SPR (Software Productivity
Research) has tagged some of this data according to
country of origin for the software.

Source: Presentation to Boston SPIN by Capers Jones, Oct., 2002

GMS

MAJOR SOFTWARE QUALITY ZONES
10

9

8

7

6

5

4

3

2

1

0

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Defect Removal Efficiency

Malpractice

U.S. and Europe
Average

Canada
India

Japan

Best In ClassBest In Class

Figure 17. Software defect data from Capers
Jones with GMS data point added

In the above figure GMS appears among the worst
at defect removal, and with the best in terms of
injecting few defects to begin with. The question is
‘what does this mean?’

Each point on the above figure expresses some
number of defects delivered to the customer. Consider
this formula:

Defects to customer = Total FP * defects per
FP * (1.0 - defect removal efficiency)

Let’s look at how the “best in class” teams would
perform if their code was the same size as GMS. Their
defects would be 230 * 2 * (1.0 – 0.95) = 23 per the
above figure. They would deliver 23 defects to the
customer. The GMS newbie team delivered 21 bugs to
the customer.

Function
Points Best US Europe Malpractice

0 0 0 0
50 5 45 160

100 10 90 320

200 20 180 640
230 23 207 736
400 40 360 1280
800 80 720 2560

Table 4. Defects delivered to customer per
Capers Jones, tabular form

The above table shows the performance of the
various teams in terms of how many defects get
delivered to the customer. The same information is
shown graphically in the figure below.

0 50
100

200
400

800

Best
US Europe

Malpractice0

500

1000

1500

2000

2500

3000

Defects
Delivered to
Customer

Total function Points

Defect Rate Data from Capers Jones

Figure 18. Defects delivered to customer per
Capers Jones data, 3D diagram

Most of the projects in Capers Jones’ database
would be waterfall projects, and they’d be measuring
the defects inserted even at unit test. That would
indicate that any agile project would measure fewer
defects inserted. Agile teams find bugs so fast during
unit test that it’s not practical to record them.

Similarly, it seems that most agile projects would
record a lower defect removal efficiency than waterfall
teams, if only because they didn’t record all those bugs
inserted during unit test.

I think most agile projects will fall toward the lower
left on the software quality zones chart. Waterfall
projects put considerably more bugs into a code base,
and so they must use resources to get them out. All of
that is waste which agile teams avoid.

7.Conclusions

There is no correlation between the defect rate and
the size of the code base. That fact demonstrates that
this team fully conquered the considerable complexity
in this project.

The team’s productivity has been compared with
industry data via the Galorath database, QSM’s
database, and Capers Jones’ database, and in every
case they come out among the top performers. From
the data, no one could distinguish them from the best
teams in the software industry, yet they were missing a
substantial degree of qualifications for this work. That

gap was overcome by agile software development
techniques and the presence of senior level skills
among some team members.

As Technical Lead, I wish that I had taken the time
earlier and more frequently to analyze the numbers.
My first attempt to analyze the project data was around
6 months into the effort. I was extra busy because I had
to maintain a waterfall façade while really doing agile
under-the-radar. If I had analyzed our data sooner I
would have seen that we were doing far better than I
thought, and that would have been a good basis for
conversations with management, to get them more on-
board with agile concepts.

In my view this case study is a clear demonstration
of the lean principle “see the whole”. Many companies
sub-optimize by hiring only very experienced
embedded software engineers. This is unnecessary. As
long as all the needed skills are present on the team,
agile practices can spread them around. I believe we
might have gotten our initial few releases out faster if
we had more experienced staffers (with other factors
the same) but not by a very significant amount.

The team’s performance despite the odds against
them shows the power unleashed when technical
people have full control over their work, and a clear
view of what needs to be done. The lean principle of
engaging the intelligence of the workers is very much
in evidence here.

Managers are by necessity removed one or more
degrees from the work being done. These results show
that managers’ best strategy is to support teams by
ensuring they have the fullest control over their work,
and tools, etc. and very clear goals rather than trying to
control software development by decomposition and
monitoring of activities. That is fundamental to lean
thinking and agile software principles.

