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Abstract 

 
There is a class of projects that can only be 

accomplished via agile practices due to their 
complexity and risks. It is rare for such a project to be 
staffed with newbies but it happened, and this paper 
tells the story. It is also rare for an agile project to 
have substantial hard numbers to tell its story but this 
one does. This paper presents detailed metrics from a 
three year long agile project where a newly formed 
development team produced a new embedded software 
product from scratch. The team experimented with 
various agile practices while recording data on bug 
rates, bug root causes, code size, schedule compliance, 
and labor expended. Although most of the team 
members lacked important technical skills for this 
work, they outperformed far more experienced teams. 
The natural learning environment and safety net that 
Agile provides allowed them to learn fast while 
keeping them from serious mistakes. 
 
1. Introduction 
 

The project in question was a joint venture between 
a multinational corporation and a major agriculture 
equipment manufacturer to produce a mobile 
spectrometer that could analyze grain. The Grain 
Monitoring System (GMS) would tell a farmer exactly 
how much protein, oil, or other constituent is present in 
their corn (or other grain) while it’s being harvested. 

This project was compelling enough to justify the 
risk of using developers who were less experienced 
than the company would have preferred. Staffing took 
place at the height of the dot com bubble, making it 
very difficult to recruit people with the preferred skills. 

The team built the embedded software for the grain 
monitor and also built seven other associated 
Windows-based utility applications. These ranged in 
size between about 1,000 and 3,000 lines of code. The 
bulk of the work by far was the embedded application 
to control the grain monitor. That code base is the 

subject of this paper. The utility software was not built 
using agile team practices. 
 
2. Project Setting and Challenges 
 

The multinational corporation was made up of 
several commercial business lines but the division near 
Boston had mainly done defense work. The grain 
monitor project was an entry into commercial 
technology products for them. The project was ideally 
suited to agile methods due to these risks: 

• Newly designed complex algorithms to 
compute the grain results 

• Extremely low noise electronics necessary for 
the sensor input signals to be detectable 

• A new prototype sensor being used to collect 
the grain’s light spectrum 

• Software and hardware had to be integrated 
with vehicle systems designed by the partner 

• No existing microprocessor powerful enough 
to handle the initial algorithm 

• The unit had to work accurately in extremes of 
temperature, vibration, and electrical noise 

 
This is clearly the type of project that makes 

waterfall methods stall out completely. Even a 
seasoned embedded team could not have built this 
product using a traditional plan-driven approach. 
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Figure 1. Project timeline showing actual 
releases and defects 

The GMS team delivered this product after three 
years of development, having encountered a total of 51 
defects during that time. The open bug list never had 



more than two items at a time. Productivity was 
measured at almost 3 times the level for comparable 
embedded software teams. The first field test units 
were delivered approximately six months into 
development. After that point, the software team 
supported the other engineering disciplines while 
continuing to do software enhancements. 

 
3. The Team 
 

For several reasons it was difficult to get software 
developers with the desired experience levels. The 
main reason is that the labor market was tight at that 
point. Also our manager was obliged to use available 
internal people and train them where necessary. 

The skills most needed were: 

• C programming 
• Multitasking experience 
• Electronics background 
• Firmware programming 

 
The below figure gives an idea of the level of these 

skills necessary for the work, and how the team 
members’ qualifications compared with that need.  
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Figure 2. Team's experience levels in key skill 
areas 

Windows programming was the main skill for three 
of the developers – Don, Sherry, and Jack (not their 
real names.)  The project did call for creation of several 
Windows-based utility applications for use with the 
grain monitor. These allowed the creation and 
downloading of calibration tables, or helped in the 
testing of the units. The GMS embedded software was 

the only deliverable; the other code bases were custom 
tools. 

 

3.1 Team’s Context in the Organization 
 

The GMS software team was one among several 
teams associated with the project at our company. 
There were small teams to build the hardware, the 
optics, develop the mathematical algorithms, and the 
mechanical design. This totaled approximately 35 
people at the height of the project. 

The software team also needed to coordinate their 
design with a small software group at the partner 
company, where they had designed a framework for all 
the software systems mounted on farm equipment. The 
GMS software had to behave as one node on the 
vehicle’s CAN bus network. The arrangement between 
the two companies was structured as a joint venture. 
 
3.2 The Technical Lead/ Coach 
 

For better or worse, I was sure of one thing: I 
wanted to have hard numbers, not mere anecdotes, 
once all was said and done. My role was that of 
Software Technical Lead. I was expected to formulate 
and analyze the requirements, and assemble a team to 
carry out the work. 

Throughout the project I was able to spend about 
half my time as a technical contributor on the project. 
The rest of the time was taken up by coordination and 
management duties. I did not have any formal authority 
over the team members; we all reported to the same 
manager. I also had no budget authority. 

The Extreme Programming community has come to 
recognize several roles within agile teams. One is 
‘coach’, someone who watches over the process and 
helps others play their parts within it. That role is a 
good description of what I did in addition to the 
technical lead duties. 

 

4. What Was Measured 
 

The team followed the IEEE guidelines on basic 
metrics. Those guidelines said that at a minimum, you 
should capture four items: 

• Effort expended 
• Size of the software built 
• Schedule compliance 
• Quality of the deliverable 
 

Effort and schedule were already captured in project 
tracking documents. We could use tools to record code 



size. It took extra effort to track defects thoroughly and 
create a root cause analysis for each one. Every 
incorrect or unexpected software behavior was 
considered a bug once it got past unit test. There was 
no attempt to catalog all the bugs caught in unit testing 
or earlier activities. 

 

4.1. Parametric Estimating 
 

Parametric estimating is a technique that relies on 
the existence of data from prior projects that are similar 
to the one being estimated. Several software estimation 
tools exist that use this technique, and we made use of 
one of them early in the project before any staffers 
were aboard. 

Our managers made a detailed evaluation of the 
“Seer SEM” software estimation tool from Galorath 
Inc. in September of 1998. As part of that evaluation, 
the consultants at Galorath collected data on the GMS 
project in order to do an estimate of the embedded 
code to be built.  

I took Galorath’s breakdowns for hours and lines of 
code and found that their industry productivity data 
could be expressed as 1.2 ESLOC/hr. (ESLOC is 
Effective Source Lines Of Code, i.e. omitting 
comments and blank lines.) Their product uses a 
database of thousands of real-world projects, taking the 
“actuals” from real-time embedded projects 
comparable to ours. Therefore the figure of 1.2 
ESLOC/hr had validity across the embedded software 
industry.  

Project data was captured with a view to comparing 
the team’s productivity with this, and any other 
software industry productivity figures that could be 
found. 

 

5. What Happened 
 

As staffers came onto the project in the first month, 
it was evident to all that they were not well equipped to 
deliver this project in the aggressive time span that 
management wanted. As team lead, I held a meeting 
with them and said I was prepared to teach them all 
they needed to know about real-time software, and 
operating systems, etc. provided they agreed to work as 
a real team and help each other. By “work as a real 
team” I meant supporting the team based practices I 
wanted to institute right at the start. These included: 

• Collective code ownership 
• Writing strong unit tests, and maintaining them 
• A bug tracing system that could be always 

enabled within the code  
 

The foundation necessary for all these was a coding 
standard. So I had them work that out prior to writing 
any production code. There was pressure to produce 
code immediately but I resisted that. It would 
undermine our ability to deliver consistently over time, 
because we didn’t have the foundations in place yet. 

The team also had to configure the tool set so that 
we’d have a fast code-compile-debug loop, with all 
compiler warnings turned up to the max. This was part 
of the safety net we constructed. 

 
5.1 The First Iteration 

 

The team delivered iteration 1 after a few months, 
and only two bugs were found in that software. Some 
of the utility software had also been built as part of that 
effort.  

I had done the estimating using a figure of 2.5 
ESLOC/hr based on my experience with similar 
projects where some of the team-based practices were 
in use. In order to see if we had achieved that, I did an 
analysis of the labor that went into iteration 1 to 
separate out the time that went only into the embedded 
software work. I included all the duration of that 
iteration, even the part when we were just doing the 
tool setup and working out a coding standard. 

The result was that the team had produced 3.5 
ESLOC/hr of tested, working code – almost 3 times the 
industry average according to the Galorath numbers. 
To be sure I had used their breakdowns correctly in my 
analysis, I spoke to one of the consultants from 
Galorath and got agreement that my analysis was valid. 

 

5.2 Learning via Mistakes and Safety Net 
 

5.2.1. Globals. We had to use a small number of 
globals to interface with programmed logic and other 
hardware. At one point early on the team started 
adding more global variables, and I tried to convince 
them that it was a bad practice. They believed the 
convenience of globals outweighed the seemingly 
abstract concerns I raised about reentrancy. I decided 
to let them use the globals awhile so they would see 
first hand the problems caused.  

Our early releases were just single-threaded code 
because the commercial operating system we planned 
to use hadn’t been purchased yet. When we got the OS 
and converted the code base (4,000 lines of C at that 
time) to using it, trouble started to appear. During 
integration test the system was halting unless interrupts 
were disabled. This gave me a chance to explain how 
that could happen due to a task switch in the middle of 
updating a global structure or variable.  



The idea that certain kinds of problem simply could 
not be traced was new for all except Bob (who had 
plenty of hardware and firmware experience). This 
kind of problem had to be prevented by using 
semaphores. Once they had that idea down, we 
eliminated most globals but needed to keep some 
others. We divided those into atomic ones and non-
atomic. For all the non-atomic globals we assigned 
semaphores, and changed the code to utilize them. 
Now they had an appreciation of the re-entrancy issue, 
and how to handle it. Better yet, it wasn’t textbook 
learning. 

Some people will say it would have been simpler 
for me to just outlaw globals instead of going through 
all these adventures. I think it was worthwhile because 
there is no substitute for the level of understanding 
they developed. If I had just made a decree then I’d 
have to police it eternally. This way the developers 
enforced the practices with far more energy than they 
ever would have if I’d simply ordered them to get rid 
of the globals. 

5.2.2. Semaphores. We again had a bug that 
disappeared when interrupts were disabled! 

The root cause of this bug was two-fold. We were 
releasing one semaphore twice, but the operating 
system had a bug that let the semaphore count go from 
1 to 2 on the second release, when it should have given 
us an error return. (These were binary semaphores, not 
counting semaphores). We shouldn’t have had a double 
release in our code, but the operating system also had a 
bug for allowing it.  

The team fixed the task sequencing situation to 
prevent the second semaphore release from happening, 
but we needed to be sure we’d know if our code ever 
again tried to double-release a semaphore.  We added 
to our safety net: we built a wrapper around all of our 
semaphore calls to the operating system to make sure 
we’d know promptly if the situation ever came up 
again.  

5.2.3. Hardware Individuality. About a year into 
the project we had several GMS units ready to be 
tested out in farm fields. We prepared a release and 
thoroughly tested it on the GMS unit we had in our lab. 

The problem was that we finally did a non-debug 
release (as we should have been doing long before 
this!). Though the non-debug build was completely 
tested, the test was done with just one unit. That unit’s 
lamp current counts happened to be within the valid 
range. The range check was skipped for ‘debug’ since 
we never had a spec on what it should be. Certain other 
units’ lamp current counts value did not pass this test. 
(Each unit had a special lamp to illuminate the grain 
for collecting spectra readings). 

Testing on one set of hardware was not good 
enough. To be valid, the tests had to be done on all the 

field units. When it came time for full production, it 
had to be done at least on a statistically valid range of 
units.  

Through this bug the team learned that debug 
builds, though convenient, can hide problems. They 
also learned that every piece of hardware is an 
individual. It’s voltage or current readings can vary 
widely from other hardware but the software has to 
defend itself from hardware that is out of spec. Our 
software monitored many “test points” on the circuit 
board that were meant to tell us whether the hardware 
was working adequately. But we needed to run it on all 
the hardware, i.e. on each of the field units.  

5.2.4. Memory Corruption. After we were 
regularly supplying units for field tests, an interesting 
bug was reported. A GMS unit would seem to be 
running but the data readings would start to remain the 
same at every sampling interval. The software log told 
us that the timing interval value was being over-written 
by a very large number, so instead of having a couple 
seconds between data samples it was set to hours.  

The detective work that the team members had to 
go through to track down this problem was quite an 
education for them. As soon as I saw the incorrect 
value in the timing interval variable I knew memory 
was being corrupted, and I explained to them several 
ways that can happen. They systematically combed 
through the code to eliminate each possibility I 
outlined.  

Their effort paid off. That time interval number was 
in a table right after the software log in memory. The 
software log was overwriting its bounds by one 
message length. Therefore, if a message was long, it 
corrupted the timing interval variable, but only after 
the software log message buffer filled up. The bug 
appeared only if the software log circular buffer was 
full and only if the last message before the “seam” was 
longer than so many bytes. This was a case where our 
unit test wasn’t thorough enough, so we added a test 
for this problem. 

5.2.5. Safety Net. Our safety net consisted of sets of 
unit tests for each module in the system, and also a 
run-time trouble logging system that was always 
enabled. It simply stored log messages in a circular 
buffer in RAM. Because it used very little memory and 
executed very fast, we could afford to have it always 
enabled. This avoided the problem of bugs that appear 
only when the log system is disabled. 

This safety net was extremely effective. In three 
years of development, we were never stuck for more 
than a few hours troubleshooting a bug. Anyone 
coming onto the team could just take the unit tests and 
step through them in the debugger to learn the behavior 
of the code.  



5.2.5. Code Reviews. Another practice that 
contributed to learning for everyone was holding code 
reviews by stepping through the code with a projector 
screen connected to our integration PC in our team 
room. It was an opportunity to discuss defensive 
coding practices, and raise questions and new ideas. I 
found that just talking about the code while looking at 
it together was quite valuable. It seemed that we caught 
the superficial bugs this way but missed the tougher 
ones. I’d say the code reviews were more of an 
educational tool than an effective bug prevention tool. 
More about this later.  

5.2.6. Kludging the Code. Once upon a time I 
believed that I’d never stoop to putting a kludge in my 
code just to get something out the door. Reality 
intervened. When we had units out for field tests, the 
company was spending a lot to have people and 
equipment out in other countries. If a problem 
developed in the field, we had to do something about it 
immediately, even if the “something” wasn’t graceful 
for the architecture. 

I used these occasions to have a brainstorming 
session with the team. The rule was that the best idea 
wins, no matter who it comes from. “Best” meant the 
change we could be most certain would fix the problem 
on the first try. Usually my idea would win but not 
always. I deferred to others when their idea was clearly 
simpler, even when it was uglier for the architecture.  

Whenever we kludged the code, we’d make it our 
top priority to get a proper fix into place promptly so 
that we could rip the kludge out. 

I believe this practice of “let the best idea win” 
helped the less experienced folks see that they could be 
peers with the more experienced ones. Especially the 
fact that I lived by the rule too, seemed to make an 
impact. They became quite well seasoned embedded 
developers by participating in this project. 

5.2.6. Leadership Lessons. I found that allowing 
developers to temporarily damage the code was a good 
teaching method. It was definitely better than banning 
certain practices to protect people from themselves. 
That doesn’t encourage investigation or self-reliance. I 
made it a rule (for myself) never to tell anyone to do 
something just because I have more experience and I 
say so. I knew I’d never listen to such advice so I 
couldn’t expect them to. Rather, I’d try to convince the 
others on the merits of my idea, and failing that, I had 
to let reality convince them. 

Working within this constraint was often 
frustrating, and it was well over a year before I got 
comfortable with it. I had no authority to compel 
anyone to use a particular practice and in hindsight, 
that is a good thing.  
 

5.3 Subsequent Iterations 
 
The team used iterations varying from about a week 

to two months, but after the first year shorter iterations 
predominated. 

5.3.1. Code Reviews Dropped. We eventually gave 
up code reviews in favor of discussions about what 
design approach a developer (or pair) would use for 
implementing a story. We could trust each other to 
follow the coding standard, and our unit tests were 
more effective for hunting bugs than our code reviews 
had been. 

Throughout the project, as I did a root cause 
analysis of each bug, we’d modify our practices if we 
saw a pattern of problems occurring. One pattern that 
did occur was failure to do enough refactoring. That 
was the root cause of many bugs. Another recurring 
root cause was code review not being thorough 
enough, or bugs slipping past our unit tests. Overall, 
our defenses were quite good – we were averaging 
only 17 bugs a year. 

5.3.2. Product Owner AWOL. At one point about 
mid way through the project, our business player (in 
XP’s Planning Game) became very busy and because 
he was confident in our ability to deliver, he refused to 
participate in three consecutive releases, leaving us to 
just work from the product backlog list. I knew that 
this would lead to problems, and kept talking to him 
about it until he agreed to come back to the iteration 
planning meetings. 

We didn’t have any serious problems develop due 
to his absence for those iterations, but my concern was 
that he’d be quite upset if we made wrong assumptions 
without his inputs. He was relying heavily on us 
because we had been delivering reliably, and he 
wanted to instead pay more attention to other parts of 
the project that were not doing as well. 

 

5.4 End Game 
 
During the project our partner company went 

through merger with another farm equipment business. 
The new owners placed lower importance on our 
project.  

Meanwhile our own company’s situation had 
changed and they were more interested in pursuing 
military projects again. Both agreed to complete the 
GMS work to the point where it was ready for 
production and then license the technology to some 
other organization to pursue further. The product had 
undergone field trials all over the world, and was a big 
success with its intended customers. 



All the known defects were systematically 
addressed in the final couple months, and then the 
development team was let go.  

 

5.5 The Story in Numbers 
 
Early in the project I persuaded the team members 

to voluntarily track their time so that we’d be able to 
tell when we should hire other developers or support 
people. Our time was tracked by the company (via 
weekly time sheets) but not broken out into categories. 
The labor categories we used are in the table below. 

 

Labor Type Description 
Detailed Design Design work at the feature level. 

Code and CSU test Unit testing and coding of functions. 

CSC Integration and Test Integration testing of GMS only. 

Team Process 
Development 

Team coordination, discussion of 
work procedures, etc. 

S/W Management Management activities that do not 
require technical skills. 

Tool support Setup, maintenance, troubleshooting 
of development tools. 

Technical Lead Management activities that require 
technical skills. 

Administrative support Clerical work that anyone can do. 

CSCI (GMS-DPC) test Test involving the grain 
spectrometer and the diagnostic PC. 

System Integration Integration between software and 
other engineerings. 

Table 1. Labor tracking categories used for 
GMS software 

 
The labor distribution changed in interesting ways 

throughout the project. For the first iteration it was 
very different because we were a newly assembled 
team and had to set up our tools and decide how we 
were going to work together. The “Process devel” bar 
reflects time spent talking about processes we’d use 
and settling on a coding standard. Note also the large 
amount of “Tool support” work. 
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Figure 3. Team's labor distribution for first 
iteration 

The below two figures show full-year labor 
distributions. The one for the first year overlaps the 
data shown for the first release.  
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Figure 4. Team's labor distribution for first 
year of project 
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Figure 5. Team's labor distribution for second 
year of project 

Labor data was not collected for the third year of 
the project.  



Each full time developer averaged between 36 – 40 
hours per week for 1999 – 2000, including vacations 
and all other absences. As technical lead, my average 
was 46 hours per week. These numbers are simply the 
gross hours worked divided by the number of weeks. 

It is worth noting that there isn’t a practical way to 
determine just what labor went into the embedded 
GMS software. The team also built custom utilities to 
go with the unit but that work was not done using agile 
practices, and that labor was not tracked separately 
from work for the embedded GMS deliverable. 

The staffing changed mid way through the project. 
Bob and Don left the team. Jack had been part time, 
and left during the first year. Sherry and I continued 
and two new developers were added. By this point the 
software development practices were well established, 
and the low bug rate was also well established by the 
original “newbie” team. 

 

Year 1 Year 2 Year 3

Key: Full time Developer

Part Time Developer

Figure 6. Staffing profile for the GMS project 

 
A typical set of scheduled releases is shown in the 

figure below, to give an idea of how often we delivered 
on time. The third release down from the top was 
seriously late due to a staffing change that wasn’t 
known when we planned that release. During this 
period we were trying out the “Planning Game” 
practice from Extreme Programming, and wanted to 
track how well we did at delivering on time. 

Version,
Finish date

Planned Days' effort,
Actual Days to complete
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Planning game - "Business" player had no time for it.
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Figure 7. Schedule performance while using 
extreme programming planning game 

 

About mid way through the project we were 
learning about Extreme Programming and bringing our 
practices more in line with that. The figure below 
shows that we were already doing most of those 
practices to some extent, and it tries to express the 
degree to which we used each practice. 
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Figure 8. Practices used before (green) and 
after (yellow) adopting Extreme Programming 

In three years the code base grew from zero to 
60,638 lines of code, mainly in C with some assembler 
code. That’s raw lines of code. Our code averaged 60% 
comments and blank lines. In other words about 40% 
of it is effective lines of code (ESLOC). 
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Figure 9. Growth of the code base over three 
years 

As the code base grew the defect rate remained 
steady at about 1.5 defects per month. The below 
figure shows the cumulative defects over the life of the 
project. Note that it is linear. 
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Figure 10. Cumulative defects over three years 

During the entire project, there were never more 
than two open defects at one time.  
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Figure 11. Absolute number of defects per 
quarter 

Throughout most of the project our “open defects” 
list held one or no items. The definition of a defect (for 
our purpose) is any unexpected or undesirable behavior 
in the software after unit testing has been completed. 
We did not play any games redefining bugs as 
“features”. 

A root cause analysis was done for each defect to 
identify how it was inserted, and to decide how to best 
prevent more occurrences. The below figure shows 
when bugs were introduced. 
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Figure 12. Phase where defects inserted 

Many defects were removed during unit tests and 
earlier activities but we did not track those. We only 
tracked defects removed at integration test and later. 
Later phases included internal release to engineers 
within our company, and external release to our partner 
company. The below figure shows the phase where 
defects were discovered. 
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Figure 13. Phase where defects found 

It has been observed that the longer a defect stays in 
the code the harder it is to remove. That was our 
experience. In order to get a sense of “a bug’s life” I 
made the below charts showing how long each defect 
stayed in the code. 

 
Defect Severity Key
Cosmetic Defect - Could leave as is

Moderate Defect - Can work around, but must fix later

Critical Defect - Must fix immediately  
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Figure 14. Defect life span, year 1 of project 
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Figure 15. Defect lifespan, year 2 of project 
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Figure 16. Defect lifespan, year 3 of project 

In order to get a sense of the type of defects that 
made it past our defenses, here is a table of the root 
causes for just the critical defects – those requiring an 
immediate fix. 
No Root cause 
1 Insufficient hardware settling time allowed 

due to no circuit board to test with 
2 Communications hang due to change to 

comms protocol without sufficient h/w test. 
5 Incorrect data readings due to poor 

synchronization design 
8 OS deadlock due to incorrect task 

sequencing 
12 Math algorithm halted – incorrect error level 

assigned. Insufficient team review of all s/w 
log error levels 

13 Change to boot code comms init could not be 
tested by us 

14 Data taken with incorrect settings due to 
insufficient communication of the design, 
and too little test prior to field use 

17 Wrong settings used for data gathering due to 
insufficient peer review of source code 

20 Overlooked the need to test with a variety of 
individual units – h/w tolerances vary. 

24 Unit stops working due to array bounds 
overrun revealed by non-debug release. 

25 Not all of calibration table loaded because 
checksum counted bytes transferred, not 
bytes written to table – insufficient unit test. 

26 Unit couldn’t access calibration data because 
we mis-communicated changed locations in 
flash memory 

32 Unit hangs up when remembered grain 
setting not present in new cal table. Poor 
analysis of new requirement to recall 
settings. 

37 Data readings off by 1, 2 or more due to 
incorrect task sequencing between unit and 
display/ controller. Design error. 

43 Bad data received due to calibration table 
generator having error. Design mistake. 

47 Controller software commands wrong grain 
type because shift-accumulator not cleared 
after use. Should have caught in unit test. 

49 Incorrect settings used for data due to sharing 
of settings buffer. Poor design. 

55 Reading wrong type of spectra due to non 
OO design of settings buffers. 

Table 2. Root causes for critical defects 

Four of the later software releases were analyzed 
using C-Metric v 1.0 (from Software Blacksmiths) and 
the average cyclomatic complexity for the whole 
release was 6 or 7 for those releases. Here is a more 
detailed look at a typical software release done near the 
end of the project.  

 

GMS 
6.6.1.1               
With the test code      W/out the test code 
File name   Func. avg CC max CC  avg CC max CC cc>10 

VSPECTRA.C 48 1 7  1 7 0

UTIL_ACC.C 24 6 42  5 42 2

TST_CASE.C 0 0 0  0 0 0

SYS_CONT.C 11 12 44  10 44 3

SW_LOG.C 13 21 198  7 28 2

STR_UTIL.C 3 4 8  4 8 0

STR_FUNC.C 3 3 5  3 5 0

STAT_TBL.C 88 4 235  1 32 1

SETUP555.C 7 1 4  1 2 0

OS_UTILS.C 5 3 6  3 6 0

MEAS_PRD.C 12 9 42  5 13 3

LED_CONT.C 7 9 16  6 13 1

LAMP_REG.C 6 11 23  9 16 1

HW_ACCES.C 30 3 14  3 12 3

GLOBALS.C 6 3 7  3 3 0



GLOBALGO.C 0 0 0  0 0 0

GENERAL.C 7 11 68  2 5 0

FLASHDIR.C 1 1 1  0 0 0

FE_INTFC.C 30 7 85  3 38 2

EXFUNCS.C 19 2 2  2 2 0

ERR_HIST.C 0 0 0  0 0 0

DET_CONS.C 9 11 37  9 26 2

CMP_SPEC.C 13 8 18  8 18 4

CMD_SWBD.C 9 10 37  7 19 1

CFIG_TBL.C 57 4 144  1 16 1

CAN_COMM.C 45 10 155  6 29 6

CAL_UPDT.C 15 8 33  8 33 3

ASERT_TX.C 1 2 2  2 2 0

APCODEHD.C 0 0 0  1 1 0

ALG_TST.C 2 6 10  10 10 0

ACQ_SPEC.C 26 10 59  7 52 5

ABS_STEP.C 10 10 40  7 11 1

Table 3. Cyclomatic complexity for release 
6.6.1.1 

 The above table shows file names (header files 
omitted), the number of functions in each file, the 
average and maximum cyclomatic complexity for the 
functions within the file. One difficulty with this 
measurement is that our unit tester code is kept in the 
same file as the production code and it’s conditionally 
compiled. Because of this, it gives a falsely high 
cyclomatic complexity reading. 

The same data was taken for release 6.6.1.1 after 
removing the unit tester code. Those results are in the 
right-most three columns. The column “CC > 10” 
indicates the number of functions within the file that 
have cyclomatic complexity above 10. 

 

6. How Team’s Metrics Compare with the 
Industry 
 
6.1. Productivity Estimate and Actuals 
 

The “Seer SEM” software estimation tool used 1.2 
ESLOC/hr as the expected productivity rate for fully 
tested, working code (as discussed in the previous 
section “Parametric Estimating”). Since the tool is 
based on data from thousands of actual projects 
segmented by type, we can accept that figure as the 
industry norm for embedded real time software. My 
previous experience led me to believe that the team 
could do 2.5 ESLOC/hr if they used the team-based 
practices I had experienced on other teams. One 
example is the use of strong unit testing, together with 
a trouble log that’s always enabled. 

My staffing level plan was based on the 2.5 
ESLOC/hr value. When the first iteration was 

completed, a detailed analysis was done to see what 
productivity level had been achieved for the embedded 
software. It was 3.5 ESLOC/hr, or 292% of the 
industry norm. This team of newbies to embedded 
programming demonstrated almost three times the 
productivity of a typical embedded team, and on their 
very first iteration! 

A rule of thumb for software test says that you’ve 
found most of your bugs when you have found about 
15 bugs per thousand lines of code (a 1.5% defect 
rate). The GMS embedded code base had 29,500 
ESLOC at the end of the project. If it had a 1.5% 
defect rate, it would have had 443 defects. Instead it 
had 51 defects (that’s the grand total over three years; 
not the number present at the end). The actual defect 
rate was 0.17%. 

Defect Rate = (51/29,500) * 100 = 0.17% 

Another useful metric is the software defect 
removal efficiency, or the percent of defects that is 
removed before the software is released. For GMS, 30 
of the total 51 defects were removed before software 
was shipped to our partner company (our customer), so 
the defect removal efficiency was: 

Defect Removal Efficiency = (30/51) * 100 = 
58.8%  

 
6.2. Comparison with QSM database 
 

In an additional attempt to compare our statistics 
with industry standards, I submitted the statistics from 
Iteration 1 to QSM Associates Inc. They used to offer a 
free service via their website to allow you to compare 
your project with those in their database. (They market 
a software estimation tool which works using 
parametric estimating, as Galorath’s tool does.) The 
“Productivity Index” they calculated for the GMS 
Iteration 1 ranked us in the 90th percentile! This index, 
as they compute it, covers code complexity (based on 
size), schedule, efficiency, effort, and reliability. 

 

6.3. Comparison with Data from Capers Jones 
 

Capers Jones, a principal at Software Productivity 
Research (See http://www.spr.com/) has accumulated 
data from a wide variety of software projects. In order 
to compare the GMS team’s performance with his data, 
we need to know how many defects per function point 
were in that software. We have the number of defects 
per ESLOC.  

Function point metrics were not in use at our 
company, so I looked up an equivalence measure 
online. For C, 128 lines of code equals one function 



point.  (See 
http://www.theadvisors.com/langcomparison.htm).  

GMS Function Points = 29500/128 = 230 
GMS Defects per Function Point = 51/230 = 
0.22 

The below figure gives defects inserted along the 
vertical axis, and defects removed along the horizontal. 
The best software teams insert few defects and remove 
a high percentage of those. SPR (Software Productivity 
Research) has tagged some of this data according to 
country of origin for the software. 

 

Source: Presentation to Boston SPIN by Capers Jones, Oct., 2002
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Figure 17. Software defect data from Capers 
Jones with GMS data point added 

In the above figure GMS appears among the worst 
at defect removal, and with the best in terms of 
injecting few defects to begin with. The question is 
‘what does this mean?’ 

Each point on the above figure expresses some 
number of defects delivered to the customer. Consider 
this formula: 

Defects to customer = Total FP * defects per 
FP * (1.0 - defect removal efficiency) 

Let’s look at how the “best in class” teams would 
perform if their code was the same size as GMS. Their 
defects would be 230 * 2 * (1.0 – 0.95) = 23 per the 
above figure. They would deliver 23 defects to the 
customer. The GMS newbie team delivered 21 bugs to 
the customer. 

 

Function 
Points Best US Europe Malpractice

0 0 0 0
50 5 45 160

100 10 90 320

200 20 180 640
230 23 207 736
400 40 360 1280
800 80 720 2560

Table 4. Defects delivered to customer per 
Capers Jones, tabular form 

The above table shows the performance of the 
various teams in terms of how many defects get 
delivered to the customer. The same information is 
shown graphically in the figure below. 
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Figure 18. Defects delivered to customer per 
Capers Jones data, 3D diagram 

Most of the projects in Capers Jones’ database 
would be waterfall projects, and they’d be measuring 
the defects inserted even at unit test. That would 
indicate that any agile project would measure fewer 
defects inserted. Agile teams find bugs so fast during 
unit test that it’s not practical to record them.  

Similarly, it seems that most agile projects would 
record a lower defect removal efficiency than waterfall 
teams, if only because they didn’t record all those bugs 
inserted during unit test.  

I think most agile projects will fall toward the lower 
left on the software quality zones chart. Waterfall 
projects put considerably more bugs into a code base, 
and so they must use resources to get them out. All of 
that is waste which agile teams avoid. 

 

7.Conclusions 
 

There is no correlation between the defect rate and 
the size of the code base. That fact demonstrates that 
this team fully conquered the considerable complexity 
in this project. 

The team’s productivity has been compared with 
industry data via the Galorath database, QSM’s 
database, and Capers Jones’ database, and in every 
case they come out among the top performers. From 
the data, no one could distinguish them from the best 
teams in the software industry, yet they were missing a 
substantial degree of qualifications for this work. That 



gap was overcome by agile software development 
techniques and the presence of senior level skills 
among some team members. 

As Technical Lead, I wish that I had taken the time 
earlier and more frequently to analyze the numbers. 
My first attempt to analyze the project data was around 
6 months into the effort. I was extra busy because I had 
to maintain a waterfall façade while really doing agile 
under-the-radar. If I had analyzed our data sooner I 
would have seen that we were doing far better than I 
thought, and that would have been a good basis for 
conversations with management, to get them more on-
board with agile concepts. 

In my view this case study is a clear demonstration 
of the lean principle “see the whole”. Many companies 
sub-optimize by hiring only very experienced 
embedded software engineers. This is unnecessary. As 
long as all the needed skills are present on the team, 
agile practices can spread them around. I believe we 
might have gotten our initial few releases out faster if 
we had more experienced staffers (with other factors 
the same) but not by a very significant amount. 

The team’s performance despite the odds against 
them shows the power unleashed when technical 
people have full control over their work, and a clear 
view of what needs to be done. The lean principle of 
engaging the intelligence of the workers is very much 
in evidence here.  

Managers are by necessity removed one or more 
degrees from the work being done. These results show 
that managers’ best strategy is to support teams by 
ensuring they have the fullest control over their work, 
and tools, etc. and very clear goals rather than trying to 
control software development by decomposition and 
monitoring of activities. That is fundamental to lean 
thinking and agile software principles. 
 


