
Taming the Embedded Tiger – Agile Test Techniques for Embedded
Software

Nancy Van Schooenderwoert, Ron Morsicato
Agile Rules, Lexington, MA

nancyv@agilerules.com, ronm@agilerules.com

Abstract
Strong unit testing is the foundation of agile
software development but embedded systems
present special problems. Test of embedded
software is bound up with test of hardware,
crossing professional and organizational
boundaries. Even with evolving hardware in the
picture, agile methods work well provided you use
multiple test strategies. This has powerful
implications for improving the quality of high-
reliability systems, which commonly have
embedded software at their heart.

Keyword s . Agile methodologies, Extreme
Programming, Embedded Development, Embedded
Agile, High Reliability Software, Real-time
Software, Agile Testing.

1. Introduction

This paper focuses on the testing techniques
the authors used on a recent embedded real-time
project. Our team and management went through
a transition to Extreme Programming and
experienced many of the same insights and
difficulties described by other teams, but this
paper will concentrate primarily on the test
techniques we used. The reasons for that choice
are

• Extreme Programming is almost
unheard-of in embedded work, possibly
because there is little guidance on how to
do agile testing there

• We assembled a set of powerful test
techniques and a good description of
them is enough material for one paper

• Our goal with this paper is to help other
real-time/embedded teams get on board
with agile techniques – strong testing is

where it starts!

We offer this technical paper with one caveat:
We, and many other XP practitioners, have come
to understand that agile software development is
first a people-centered activity and only
secondarily a technical discipline. XP cannot be
imposed on developers who don’t buy into its
philosophy. It is a perfect example of what W.
Edwards Deming [1] called an “intrinsic
motivator” in that it depends on people’s pride in
their work, wanting to be part of a team, and
willingness to pitch in. The opposite is what he
called “extrinsic motivators” like arbitrary
deadlines, threats, and bureaucratic rules. Those
things can never generate real teamwork – they
destroy it. You need real teamwork to get the
most from the test techniques described in this
paper.

2. Our Situation

The authors worked together on a recent real-
time embedded project, Nancy as team technical
leader and Ron as a senior member of the team.

The project’s goal was to produce a mobile
spectrometer, using a newly developed
proprietary technology. It was a new product,
being designed from scratch. The system would
receive a spectrum of data, apply a complex
mathematical algorithm, and send results out over
a communication link to a separately supplied
display unit.

Our design called for a 32-bit microprocessor
with floating point. We used C with some
assembler, an RTOS, and had to support two
different communications protocols. The final size
of the embedded code was just under 30,000 lines,
excluding comments.

This project is typical of many real-time
embedded projects – a data acquisition stage,
application of an algorithm, followed by output of
a result.

These test techniques themselves are not new,
but we used them to an extent we have not seen
before, and in a combination we have not seen
before.

The following sections on each technique will
present the problem it addresses and then discuss
how well that technique worked for us. The
concluding section will present our reflections on
the use of these practices in combination.

2.1. Evolution of Hardware Platform

In embedded development, the hardware is
always changing. It evolves in steps that the
software must support. This dovetails nicely with
iterative software development. Our project was
using a new microprocessor, which could only be

obtained as part of an evaluation board from the
chip vendor. This was because the chip was not
yet fully working – the CPU worked but not all of
the on-board peripherals.

Figure 1 gives an idea of the hardware
evolution we experienced, which is not at all
unusual in embedded work. Early on, an
evaluation board (often several of them from
different vendors) is obtained so engineers can
select a CPU and check out its performance. The
figure shows configuration 1 as having a rev-A
microprocessor. Later configurations add a
prototype board. In our case this board was an
early version of the sensor hardware for bringing
in the spectrum that would be measured. The final
configuration would dispense with the evaluation
board and combine everything on one board for
economical production costs. Ideally one would
go straight from Configuration 4 to Configuration
7 if possible. It’s not uncommon that the board
intended to be for final production becomes
instead one more pre-production board, as
problems or new requirements are discovered.

A

Eval

Config 1 Config 2

B

Eval

Config 3

C

Eval
Proto-A

Config 4

D

Eval
Proto-B

Config 5

G

Pre-Production-A

Config 6

H

Pre-Production-B

Config 7

J

Production-A

Figure 1. Evolution of the hardware

Any embedded software development strategy
must deal with changing hardware. A common
approach (and the one we used) is to let #define
statements control parts of the code that are
specific to a given hardware configuration. This
strategy was used in parallel with the remaining
test practices described here.

3. Embedded Testing Techniques

3.1. Trouble Log That’s Always On

An ancient defense against bugs is to code a
mechanism for displaying brief messages to
indicate that some portion of the code was
reached, or a variable has an invalid value, etc.
These methods are awkward, and when enabled
they can make the code execute differently,

frustrating attempts to troubleshoot a problem.
The logging is normally disabled because it
consumes too many system resources. Having
seen things like this on past projects, we wanted
to improve on it.

Early in our project, Nancy established a
different kind of trouble log to avoid those
disadvantages. It’s an extension of the idea put
forth by Steve Maguire [2] that makes use of the
C library “assert” macro. The ordinary assert
macro can be used to state an assumption, e.g.

 assert(bufcount > 0);

so that execution will halt if the expression in
the parentheses is not true. Such a halt lets you
examine the call stack to see what went wrong.
That’s ok in the development lab, but the code

shouldn’t halt when it’s in customer use! A
wrapper function provided the smarts to either use
the plain assert macro or quietly write a diagnostic
message to a buffer, depending on a flag that
indicated development or field environment.

The overhead of a ‘printf’ call is high for an
embedded system, and there is typically no
display device anyway. So we used a circular
buffer in RAM to hold brief fixed-length text
messages. Each message reported the source file,
line number, severity, and diagnostic text. Here is
an example of a trouble log message being
written:

 Log(I, __FILE__, __LINE__, "Beginning
Algo run.\n");

and how the resulting log file looks (below)

Rec # Sev Filename Line # Description Timer Ticks
 4 I meas_prd 654 Beginning Algo run. 17384
 5 W stat_tbl 2536 2147565568:BIT check failed 17383
 6 I can_comm 2421 17112
 7 I meas_prd 654 Beginning Algo run. 16939
 8 W stat_tbl 2536 2147565568:BIT check failed 16938
 9 E meas_prd 1029 Bailing out -'prod_name' error 14951
 10 W det_cons 601 No Product selected. 14951

Figure 2. Sample trouble log output

Our embedded system had a communication
link to a PC that allowed upload of the trouble
log. Because this logging system was the first
code written, the team used it throughout all of the
code to validate assumptions, and to trace
execution of code that is difficult to trace any
other way. For example, a diagnostic could be

written at the start and finish of an ISR, and since
the trouble log contained the clock tick for each
entry, you could just subtract to see how long the
ISR took to execute.

We’d code a severity level into each trouble
log call. That was necessary to govern the
behavior of the system, as follows:

Severity Action in Development Action in Field

Informational Write to buffer Write to buffer

Warning Halt Write to buffer

Error Halt Write to buffer

Fatal Halt Write to buffer and do orderly
shutdown

Table 1. Trouble Log Severity levels and Actions

The best thing about the trouble log was that it
was always on. Because it was only a write to
memory (fast execution) and used a circular
buffer (small memory footprint) it was an agile
way to balance resource use with the big
advantage that you could troubleshoot a bug
without altering the way the code executes by
enabling the logging system.

When the product was in field test, we could
look at a trouble log dump and know a great deal
about the state of the system. It was a tremendous
help in diagnosing field problems since the
science behind the product idea was also being
tested. In the development lab, it was wonderful
to have the code simply halt when an assertion
failed; the whole story was there in the call stack.

Most of the time the problem cause was instantly
clear.

This technique depends on the team to put
enough calls into the code and at the right places.
It also requires that everyone understand the
severity system and use it correctly. We relied on
code reviews and pair programming to help us
achieve thorough, consistent use of trouble log
calls in the code.

3.2. Dual-Targeting

When you try to run newly written software on
your embedded platform, you are tackling many
unknowns simultaneously. A problem on the
board, the CPU circuitry, the connectors, or the
cabling can masquerade as a software bug sending
you off on a huge and frustrating waste of time.
Hardware that worked perfectly one minute can
be buggy the next – intermittent hardware bugs
are horrendous to deal with. We needed a
practical way to completely isolate the software
under test – to avoid debugging hardware and
software simultaneously!

Our application ran on a desktop PC as well as
on the target CPU. We maintained this capability
throughout development, even after we had good
hardware. With so many hardware components at
early stages in their own development, we simply
could not risk having to troubleshoot with
multiple unknowns. Very little of the application
had to interact directly with hardware. A #define
was used to bracket code that depended on
hardware, and skip over it when running on a PC.
If the skipped code brought in sensor data, we’d
just substitute dummy data when running on the
PC. For testing, that was better than real data
anyway because we could contrive it to exercise
desired code paths.

We would've been overwhelmed without the
ability to quickly isolate hardware problems. By
gaining confidence in our code through testing it
on stable hardware (inside a desktop PC), we
could then bring it to the target CPU knowing that
the only areas left to test were timing-related
behaviors and direct interaction with hardware,
such as controlling a motor or LED. Another
advantage of this approach is that test data inputs
were right there in the code, bracketed by #defines
for execution on a PC. Even after the code was
migrated to the target CPU, it could be exercised

at any time on the PC.

This test technique required all the team
members to have a clear understanding of the
boundary between “pure” code and hardware-
specific code. That, in itself, was good for
software design and modularity. Finally, by
continuing with the dual targeting strategy, we
were able to maintain an environment that was
amenable to automation. Each night we were able
to run scripts that built and ran the full bevy of
unit tests on the PC, and built the test harnesses
for the embedded target, which we could run
manually the next day if desired.

3.3. Hardware Driver Unit Tests

The problem in our dual-targeting strategy is
that we had no explicit test code for the parts of
the software that drove hardware; we were
jumping over those spots (as described in the
previous section).

In a complex embedded system there will be
classes that touch the hardware and others that do
not. Of the classes that touch hardware, we must
further distinguish between components that are
driven by the environment (such as ISRs), and
those that drive hardware. For the former, the unit
testing strategy is to stub, as described above. But
for the latter, we needed a special type of unit test
that can only be run on target hardware.

For components that drove hardware, the
second unit test was for manual execution only on
the target CPU. These hardware unit tests call
production routines in the module that directly
access hardware to actuate a motor, turn on a
LED, or whatever. As an example, our hardware
had a 3-position shutter to let all the light signal
in, block it completely, or pass it through a filter.
The software unit test (the one running on a PC)
would skip over code that actuated the shutter
motor.

Without our hardware unit test, the only way to
check the motor logic would be with the full
system running. But it was time-consuming to
bring the full system into each of the states that
would move the shutter to all its possible
positions. An integration test is not a good
substitute for a missing unit test. All we really
needed was to pass shutter position commands to
the function that monitored and operated the
motor. That is all the hardware unit test code did.

One could compile that hardware unit test code,
load it to target hardware, then step through with
the debugger and watch the shutter move to each
of its positions.

These hardware unit tests are very valuable for
groups outside the software team – electrical
engineers, test personnel, and production
technicians. For them, the alternative of having to
run the full system and trick it into doing things to
move the shutter’s position was simply not
feasible. Ditto for other hardware devices in the
system. This kind of support to related
professional organizations fostered a collaborative
environment between them and the software team,
which became exceptionally meaningful during a
period of intense phenomenological investigation
just prior to going to market.

We put a set of our hardware unit tests together
underneath a simple command line menu and sent
that to our board vendor to run as a final test
before they shipped boards to us. Because the
very same code was driving the hardware in the
application, we never had to debug code at that
level once it correctly drove the hardware. This
helped the electrical engineers we worked with to
have confidence in our software.

3.4. Domain Level Tests

A specific problem for us was that the serial
communications domain was having unexpected
delays between receiving a command and
responding. Unit tests were too fine-grained to
address this, but testing with the full system
brought in too many variables. Unit tests could
address logic but not timing.

Anytime you cannot distinguish whether a
problem is within a domain or is somewhere else
in the system, you need domain level tests. In
embedded systems you are more likely to run into
this kind of situation because of timing
constraints.

We could build an executable containing only
the serial communications domain, load that to
target hardware, and send it test commands over
the serial link. From a laptop we could then send
commands to the system, which now consisted
only of the serial communications domain, and
check the response time. Because domains had
little coupling to the rest of the system, it was easy
to build mock objects to cover those inputs and

outputs.

Our timing problem was observed both with
the full system running, and with just the serial
communications domain running “stand alone”.
Therefore we knew the problem was within the
serial communications domain.

Domains are to the system what methods are to
a class. This technique let us use the same testing
strategy, raised up one level.

This domain-level testing became a crucial tool
for isolating problems observed at the system
level, such as timing delays. It was especially
helpful when debugging problems associated with
the puzzling displays. A distributed team at a
partner company developed code for a separate
control and display unit for use with our
spectrometer. Domain level tests of our team’s
interfacing domain quickly determined where the
problems were.

3.5. Special Test Mode for Volatile
Domains

The mathematical algorithm to be implemented
in our software was in a preliminary state.
Mathematicians were busy revamping it all the
time, using Matlab to run test data through its
logic. It was a given that the minute we coded it,
we’d have stacks of changes to implement, and
they’d keep coming.

To keep algorithm changes from becoming a
black hole in our efforts, Nancy proposed a plan
to have the computer check our computations
against data obtained from Matlab by the
mathematicians. We did not write unit tests of
each stage of computation because preparation of
realistic test data (arrays and matrices) would
have been difficult to do on our own and the
mathematicians’ time was already stretched thin.

Instead we took advantage of the work they
already did to prep test data for use in Matlab. The
data path for our product originated in sensor
hardware and went through a variable number of
computation stages before a final result was
complete. If we could get our software to
optionally inject the same initial test data, and
compare the end result with the Matlab result, that
would make testing much easier. If we got a
different end result for the same input data, we’d
know there was a mistake in the software. But that

would leave us with the job of narrowing down
which stage of the computation had the bug. No
problem – it wasn’t much more effort to also

check the intermediate stage results. The figure
below shows this idea.

Sensor
Hardware

Software
Stage 1

computation

Software
Stage 2

computation

Software
Stage n

computation
Result

Dummy
Input data

Matlab
Stage 1

computation

Matlab
Stage 2

computation

Matlab
Stage n

computation
Result

Compare
data

Compare
data

Compare
data

Figure 3. Test Strategy Mathematical Algorithm

The algorithm designers didn’t mind giving us
the sets of Matlab data from their tests because
this was easy to generate. Each time they wanted
a new version of the algorithm implemented in the
embedded software, they gave us their test data in
addition to the math changes. Our code had a
variable to enable this test mode, and a set of files
to pull the Matlab data from, for comparison. The
test mode was conditionally compiled, so the
extra memory necessary for this only had to be
present on development units.

This technique allowed us to easily implement
and test changes no matter how often they
occurred. Because the test is a full-system test on
target hardware, a long list of possible trouble
sources could be checked off quickly.

This technique amounted to doing integration
test and unit test of the algorithm simultaneously.
The effort to set up the data files and the code to
control the test mode was paid back many times
over.

In cases where a domain is expected to
undergo many changes throughout development,
there is high interest by system designers in
monitoring the changes at whatever level of
maturity the remainder of the system may be in.
Iterative releases support concurrent development
[3]. In our case, iterations were a great advantage

for our cooperation with the algorithm designers.
Nevertheless, a domain by nature is not totally
independent from other domains, and the effect of
other domains may be of interest to system
designers.

4. Reflections

The biggest result of using these testing
techniques is that we had an amazingly low bug
rate. At the unit level, bugs were caught so
quickly and easily that we didn’t bother to count
them. We did keep a log of every bug that made it
to integration test or further – those had
something to teach us. In three years of
development there were only fifty-odd bugs in
this group. Our list of open bugs never had more
than 2 items at any one time. That means we spent
close to 100% of our time adding value instead of
scrambling to fix defects.

Our relationship with the hardware group was
qualitatively different from what we’ve observed
in non-agile projects. In most shops whenever it’s
unclear whether a bug is in the software or the
hardware, software is guilty until proven innocent.
We turned that around by making it very easy to
check the software in nicely isolated chunks. The

electrical engineers working with us began to
double-check hardware before concluding there
was a software problem.

The ability to thoroughly test the math
algorithm, and to follow the state of the system
out in field tests via dumping the trouble log,
allowed us to provide answers when the units
behaved strangely in the field and questions came
up. New hardware and new spectroscopy science
were being tested – it turned out that the software
was the most stable part of the system.

5. Acknowledgements

Ellen Lord, Dana Sawyer for their leadership.

Mark Obremski and Mike Grodin, our
hardware co-workers, for excellent collaboration.

Bill Grove, Tony Lee, Stephanie Leong for
great software teamwork.

6. References

[1] Deming, W. Edwards, The New Economics For
Industry, Government & Education 2nd Edition, MIT
Press, Cambridge, MA, 1993

[2] Maguire, Steve, Writing Solid Code, Microsoft
Press, 1993

[3] Poppendieck, Mary, Lean Software Development,
Addison Wesley, 2003

