

© Lean Agile Partners Inc. www.LeanAgilePartners,com inquiry@LeanAgilePartners.com

100 to 1 Ratio for Agile Defect Prevention Over Traditional

Methods

© Nancy Van Schooenderwoert, @vanschoo, nancyv@leanagilepartners.com

“There is no hard data that Agile software practices are better – just anecdotes from developers
who simply prefer it.” This kind of comment is often heard, but hard data is actually available. In
fact, there is reliable data showing more than a 100-to-1 difference in how well software teams
perform defect prevention.

Capers Jones has reported that an average traditional (that is, non-Agile) software codebase has a
defect density of 4.5 defects per function point. For software written in Java, that means over 4 bugs
in every 53 lines of code!1 He went on to add that the best traditional teams achieve a defect density
of 2.0 defects per function point.

What about Agile teams? When I heard Capers Jones give a presention on this topic, it was
immediately clear that I could directly compare my own Agile team’s defect density with his
software data – just what I had been looking for! His data was based on over 12,000 projects and I
had been looking for a way to compare our performance against a legitimate broader measure.

There was just one problem – we hadn’t actually been using function points as our measure of
software size. All we had were simple static metrics such as lines of non-comment code.
“Backfiring” tables help you to convert from lines of code to function points, but it’s important to
understand the variation inherent doing so. I found that 128 lines of C code were equivalent to 1
function point2. Next I calculated the defect density for our GMS (Grain Monitor System) project
this way:

Effective software lines of Code (ESLOC) - 29,500 [total non-comment lines]
Total defects in code base = 51 [includes defects found post-delivery]
Lines of C code per Function Point = 128
GMS Function Points = 29500/128 = 230
GMS Defects per Function Point = 51/230 = 0.22

Therefore our project’s average defect density was 0.22 defects per function point.

1	
 Tables	
 that	
 associate	
 lines	
 of	
 code	
 with	
 function	
 points	
 can	
 be	
 found	
 at	

http://www.qsm.com/resources/function-­‐point-­‐languages-­‐table	
 and	
 they	
 give	
 ranges	
 of	
 values,	

because	
 function	
 points	
 is	
 really	
 a	
 complexity	
 measure.	

	
 	
 	

2	
 This	
 figure	
 came	
 from	
 a	
 lines-­‐of-­‐code-­‐to-­‐function-­‐points	
 table	
 that	
 is	
 no	
 longer	
 online.	
 I	
 referenced	
 it	

in	
 the	
 paper	
 “Embedded	
 Agile	
 Project	
 by	
 the	
 Numbers	
 With	
 Newbies”	
 and	
 have	
 seen	
 the	
 same	
 figure	
 of	

128	
 lines	
 of	
 C	
 code	
 given	
 in	
 another	
 source	
 at	
 http://www.cs.helsinki.fi/u/taina/ohtu/fp.html	

© Lean Agile Partners Inc. www.LeanAgilePartners,com inquiry@LeanAgilePartners.com

That’s nearly ten times better than what Capers Jones reported for the best of the traditional
software teams (at 2.0 defects/fp)! Could it be right? Another lookup table gave 97 as the average
number of lines of C in one function point. Plugging that into the calculations gives:

GMS Function Points = 29500/97 = 304
GMS Defects per Function Point = 51/304 = 0.168

This other calculation makes our project’s defect density more than 11 times better than the best
traditional teams.

Separately from the Capers Jones data, I found a description of two more Agile software teams that
was complete enough for me to calculate their defect densities in the same way.

Team Defects per Function
Point

Approach

Follett Software1 0.0128 Agile

BMC Software1 0.048 Agile

GMS2 0.22 Agile

Industry Best3 2.0 Traditional

Industry average3 4.5 Traditional

1. Computed from data reported in “How Agile Projects Measure Up, and What This Means to You” by

Michael Mah, Cutter IT Journal, Vol. 9, No. 9 (Sept 2008), page 10
2. Van Schooenderwoert, “Embedded Agile Project by the Numbers With Newbies” paper presented at

Agile 2006. Available at http://www.leanagilepartners.com/publications.html
3. Capers Jones presentation for Boston SPIN, Oct., 2002. Available at http://www.boston-

spin.org/talks.html#yr2002

Table	
 1.	
 Defect	
 densities	
 for	
 Agile	
 and	
 traditional	
 teams	

In the Cutter IT Journal, Michael Mah published an article where he gave lines-of-code and defect
numbers for two Agile teams that he studied. One of these, the Follett team, achieved 0.0128
defects per function point – easily another order of magnitude beyond my GMS team! The other
team he reported on, BMC, also exceeded our result though not by as much. Here is what those
calculations look like:

ESLOC = 500,000
Total defects = 121
Lines of Java code per Function Point = 53
Follett Function Points = 500000/53 = 9434
Follett Defects per Function Point = 121/9434 = 0.1283

ESLOC = 700,000

© Lean Agile Partners Inc. www.LeanAgilePartners,com inquiry@LeanAgilePartners.com

Total defects = 635
Lines of Java code per Function Point = 533
BMC Function Points = 700000/53 = 13208
BMC Defects per Function Point = 635/13208 = 0.048

The BMC team’s defect density was 40 times smaller than the best traditional teams, and they were
a large 92-person distributed team using Scrum. The Follett team was co-located, with a peak staff
of 25 people using XP. Their defect density of 0.128 was 156 times smaller than the best traditional
teams!

What do these numbers mean? They are the visible sign of problems avoided. Low defect densities
mean the team is preventing defects, or catching most of them with less-than-usual effort expended.
This is in stark contrast to teams that have high defect densities and must delay releases while they
clean up the bugs. All that extra work is pure waste which Agile teams avoid by early and frequent
testing built right into every stage of the work.

What’s new is seeing this waste quantified: A 100-to-1 improvement can’t be achieved by just
pushing harder, or working late. No offshore team gets paid 1/100th of the on-shore labor rate. This
is a sign of a systemic improvement that really works.

Before moving to Agile, software teams generally are devoting a third to half of their time to
rework due to defects. Therefore, a team can approach doubling of their output through Agile defect
prevention practices alone. The implications for safety-critical work are even more significant.

In safety-critical applications, hard-to-test scenarios that were checked by analysis in traditional
teams are now tested in Agile teams by exercising the production software within a ‘test runner’
harness. Test runners are a tool used by developers to test the software as it’s being written, and
they also execute regression tests automatically – usually many times per day. The result is that
many more defects are caught early, and hazard mitigations can also be repeatedly checked to
ensure they have not been inadvertently weakened.

Agile design, development, and test practices are a real breakthrough that ends the need to choose
between quality and speed in software development.

3	
 The	
 table	
 at	
 http://www.qsm.com/resources/function-­‐point-­‐languages-­‐table	
 gives	
 53	
 as	
 both	
 the	

average	
 and	
 the	
 median	
 lines	
 of	
 Java	
 per	
 function	
 point.	

